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The recent rise of Artificial Intelligence (Al)
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[1] Silver, D. et al. “Mastering the game of Go without human knowledge.” Nature, 2017.
[2] Smith, L. et al. “A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free Reinforcement Learning.” Proc. of the XIXth Conference on Robotics: Science and
Systems, 2023.

[3] https://www.nobelprize.org/prizes/lists/all-nobel-prizes/ o



Reinforcement Learning (RL)

A key technique behind these advances

Markov Decision Process (MDP)

Environment

State

Next state
Reward

@ Learn to associate states to rewarding actions: a policy

Sutton & Barto. “Reinforcement Learning: An Introduction.”, 2018, MIT Press.



The need to consider multiple objectives

Reward:
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[1] Vamplew, F et al., "Scalar reward is not enough. a response to Silver, Singh, Precup and Sutton (2021),” Autonomous Agents and Multi-Agent Systems, 2022,

[2] B Leroy, P G. Morato, J. Pisane, A. Kolios, and D. Emst, “IMP-MARL: a Suite of Environments for Large-scale Infrastructure Management Planning via MARL,” NeurlPS, 2028,
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Traditional approach in RL

The trial and error

While not happy: This Is decided by the
engineer, not the end user

1. Set a weight/“importance” to each objective )
2. Scalarize the objectives: (0.3 * obj 1 + 0.7 * obj 2
3. Train the RL agent & This takes hours or days

obj 2 \‘

4, Look at the resulting behavior

We can do hetter !

5 Obj_1



Today’s menu

How to do better than the trial and error.

/ A glimpse of:

1. Single Agent MORL » ® Solution concepts

2. Multi-Agent MORL » < e Naive baselines

3. Example application ® Algorithmic improvements

\ ® [ooling



1. Multi-Objective RL



Setup

Environment

Action

[1] Roijers, D. et al., “A Survey of Multi-Objective Sequential Decision-Making,” Journal of Artificial Intelligence, 2013.

[2] Hayes, C. et al., “A practical guide to multi-objective reinforcement learning and planning,” Autonomous Agents and Multi-Agent Systems, 2022.
3



Optimal policy?

Optimal policy in
single-objective RL

.. With vectorial rewards *

Averaged over

various epi
— arg max

. . t
" =argmaxE,, wr(s,) E Yr(Se, at, St+1) | So

s

Discounted sum of rewards

sﬁgdes eplsode obtained
“at~T(St) |O OU\(IﬁQ @ﬂ@%ﬁb@\l&% S0

argmax is not defined on vectors...

. We can use a function g :
scalarize the reward vector (if we know them at training
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... with vectorial rewards 7* = arg max

T

Scalarizing after

expectation -

4
Scalarizing before  « X
expectation -

Non-linear scalarization
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SER: when you want the agent to behave on average over various episodes, e.g., investing
ESR: when you want each application of the policy to be good, e.g., cancer detection

D. Roijers, D. Steckelmacher, and A. Nowe, “Multi-objective Reinforcement Learning for the Expected Utility of the Return,” ALA workshop at ICML/AAMAS/IJCAI, 2018.




What if you don’t know the user
preferences at training time?

Solution concepts

MORL
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[1] Talbi, E.-G., “Metaheuristics: From Design to Implementation.” Wiley Publishing, 2009.

[2] Zitzler, E., “Evolutionary algorithms for multiobjective optimization: methods and applications,” in Ph.D. Dissertation. ETH Zurich, 1999. S peed
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Multi-policy MORL

Learning behaviors associated with different compromises

Energy
efficiency

Velocity

[1] Roijers, D. et al., “A Survey of Multi-Objective Sequential Decision-Making,” Journal of Artificial Intelligence, 2013.

[2] Hayes, C. et al., “A practical guide to multi-objective reinforcement learning and planning,” Autonomous Agents and Multi-Agent Systems, 2022.
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A posteriori methods

Single

Energy T
efficiency .
Velocity )
1
I Solution
MOMDP > Algorithm > Solution set H—> .
I choice
ll
1
Training or . Selection phase

learning phase ::

[1] Roifers, D. et al., “A Survey of Multi-Objective Sequential Decision-Making,” Journal of Artificial Intelligence, 2013.

> .
solution

Execution or
testing phase

[2] Hayes, C. et al., “A practical guide to multi-objective reinforcement learning and ,o/a%ing, " Autonomous Agents and Multi-Agent Systems, 2022,



algorithms

Families of multi-policy

/ S
7 \\\
Pareto-based p Decomposition-based N
/ \

 Learn Pareto fronts for each state-action [1]; f » Decompose the problem into several single-

! objective subproblems using a scalarization |
- Bootstraps on sets of vectors: ,\ function [2]; ]
» ~ 5 existing works; \\\ * A large majority of existing works are /

decomposition-based,;

* Does not really scale to deep RL yet.

\\\ " .
N\ Trivial to scale to deep RL.
V

[1] K. Van Moffaert and A. Nowe, “Multi-objective reinforcement learning using sets of pareto dominating policies,” The Journal of Machine Learning Research, 2014.
[2] F. Felten, E.-G. Talbi, and G. Danoy, “Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework,” Journal of Artificial

Intelligence Research, 2024.
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Naive MORL/D

welghts = generate uniformly(n objs) obj2

policles = []

\

for w 1n weights:

pi, v = train rl(w, scalarization, env)

policies.append((pi, Vv)) ////// \\\\\\

L

>

pareto optimal prune (policiles)

obj 1

return pareto optimal True Pareto Front (unknown)

MORL research is about doing better than this...
And we often use existing methods from other fields such as MOO

16



Which scalarization function?

Linear? Z w; X obj;
i€[1,2]

obj 2 N
\ e Most common scalarization
® But, cannot capture points In the concave
~ parts of the PF;
\\
/ \ Other non-linear functions exists, e.qg.
oby 1 Chebyshev, PBI, etc. [1]

[1] Zhang, Q. and Li, H. “MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition,” IEEE Transactions on Evolutionary Computation, 2007,
17



Can we use existing solutions to discover new ones?

MOO: Gooperation techniques and similarity between neighlbor solutions

Decision space | Objective space Crossover
variable 2 4 obj2
vamable 3 a —>
variable 1 obj 1

Multiple ways to “cooperate” exist: crossover, shared search memory, etc.

[1] Zhang, Q. and Li, H. “MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition,” IEEE Transactions on Evolutionary Computation, 2007,
18



Cooperation in MORL

Objective space

P t @ ®e obj2
dralmeler space ® 00 \
parameter 2 ‘ ‘ ‘
‘ o0 . -
—olicy evaluation
N
parameter 3
</ \
\ N
et -
@ .
obj 1

>

parameter 1
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Cooperation in MORL

parameter 2
A

parameter 3

>

parameter 1

obj 2

—olicy evaluation

obj 1

Chen, D., Wang, Y., and Gao, W., “Combining a gradient-based method and an evolution strategy for multi-objective reinforcement learning,” Applied Intelligence, 2020.

20



Cooperation in MORL

Conditioned network

Action
values

Welight vector {

1 network encodes multiple (all?) policies!

Abels, A., et al., “Dynamic Weights in Multi-Objective Deep Reinforcement Learning,” in Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.
21



Recurring topics

Multi-Objective Optimization

e MORL/D Reinforcement Learning
based on Decomposition

' >
How to cooperate between subproblems? vhat variant of the Bellman update:

Which scalarization function? Which replay buffer strategy”

How to generate weight vectors”? On or off-policy”

A lot of existing techniques from M0O and RL can be applied to form new MORL/D
methods.

Actually, various MORL contributions already use existing techniques. But the
interactions hetween MO0O0/D, RL and MORL are not well identified.
22



A taxonomy to classify existing and future works

SER
> Scalarization

ESR .
Regression | . o regression
Weights structure
Policy < Scalarized RL
Shared Reference point improvement MO Bellman update
structure —[MOO/D MORL/D} { RL J
Transfer Exchange <—— Cooperation Storage strategy
mechanism Buffer < Sampling strategy
Shared
Neighborhood size
model Selection
. Policy-following
Sampling <
Model-
Archive odel-based

We also propose a framework based on the taxonomy to construct adhoc algorithms

F. Felten, E.-G. Talbi, and G. Danoy, “Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework,” Journal of Artificial Intelligence Research, 2024.
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The MORL/D taxonomy

Bringing more clarity on ad-hoc contributions.

MOO RL
Weight vectors Cooperation Buffer
Reference Regression Policy Storage & | Sampling
When? | How? Neighb. Mechanism | Trigger structure improv. Neighb. | Samplin strategy
pling
Strategy
Scalarized
A ive - ingle - :
[Roijers et al., | Dynamic daptive Single , Transfer Periodic nX Tabular | POMDP / / Pohcy.
2015b OLS Closest weight following
] solver
[Mossalam Dynamic Adaptive - | Single - , Transfer Periodic nx DN Scalarized Indep. Rec':ency + Pollcy.
et al., 2016] OLS Closest weight + MO reg. | DQN Uniform following
: Parallel
[Chen et al., | Static Manual All Shared buifer Continuous || nx DNN Scalarized All Re(?ency + policy
2020 Shared layers SAC Uniform .
] following
Envelope S Polic
n i
[Yang et al., | Dynamic | Random All CR Continuous || 1x DNN veop All Recency + y.
2019] DQN , following
Uniform
DNN Scalarized Poli
[Xu et al, | Dynamic | Uniform None None None nXx calarize Indep. Rec.:ency - 0 1cy.
2020a] + MO reg. PPO Uniform following
1% DNN Scalarized, HER + Pol;
[Abels et al., | Dynamic | Random All CR Continuous Multi-weights | All PER ° 1cy.
2019] + MO reg. ) ) following
DQN (Diversity)
Scalarized HER +
Adaptive - 1x DNN ’ Poli
[Alegre et al., | Dynamic daptive All CR Continuous % Multi-weights | All PER ohcy.
2023] GPI-LS Shared model + MO reg. DQN or TD3 (GPI) following
[Castelletti Dynamic | Random All CR Continuous 1x Trees Scalarized / / Historical
et al., 2013| FQI dataset

F. Felten, E.-G. Talbi, and G. Danoy, “Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework,” Journal of Artificial Intelligence Research, 2024.
24



Framework instantiation

Discrete state/action spaces
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Scalarization Weight vector Policy improvement

Uniform, then adaptive Expected Utility Policy
technique from MOO [1] Gradient [2]

MORL/D Chebyshev

[1] Czyzzak, P and Jaszkiewicz, A., “Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization,” Journal of Multi-Criteria
Decision Analysis, 1998.
[2] Roijers, D., Steckelmacher, D., and Nowe, A., “Multi-objective Reinforcement Learning for the Expected Ultility of the Return,” in Proceedings of the ALA workshop at

ICML/AAMAS/IJCAL 2018. o%




Framework instantiation

MORL/D EUPG PSA ——— Multi Policy MO Q-Learning (OLS)

Pareto Front

A
—5-
MORL/D can learn points in qé
the concave part of the PF. — — 107
Finds different points thanks — 15
to the weight adaptation W A |
technigues from MOO _(’) 5'0 1('5

Iterature.
Treasure value

F. Felten, E.-G. Talbi, and G. Danoy, “Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework,” Journal of Artificial Intelligence Research, 2024.
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Standard environments
f}{ MO-Gymnasium

>25 MORL environments under a unified AP

= 1148 151 161

Open-source, part of the Farama Foundation since
2023

Useful and used

> 100k downloads in ~1.5 years

F. Felten, L. Alegre, et al., “A Toolkit for Reliable Benchmarking and Research in Multi-Objective Reinforcement Learning,” NeurlPS, 2023.
28




Single or Utitlity Observation Action
Algorithm
multi-policy function space space

MOQL [Van Moffaert et al., 2013] Single Linear Disc. Disc.

Non-linear,
EUPG [Roijers et al., 2018] Single Disc. Disc.

ESR

MPMOQL [Van Moffaert et al., 2013] Multi Linear Disc. Disc.

Non-linear,
PQL [Van Moffaert and Nowé, 2014] Multi Disc. Disc.

SER (*)

OLS [Roijers and Whiteson, 2017] Multi Linear / (*%) / (**)
Envelope [Yang et al., 2019] Multi Linear Cont. Disc.
PGMORL [Xu et al., 2020a) Multi Linear Cont. Cont.

Non-linear,
PCN [Reymond et al., 2022] Multi Cont. Disc.

ESR/SER (*)
GPI-LS &
Multi Linear Cont. Any

GPI-PD [Alegre et al., 2023]
CAPQL [Lu et al., 2023] Multi Linear Cont. Cont.
MORL/D [Felten et al., 2024] (Section 2.2) Multi Any Any Any

F. Felten, L. Alegre, et al., "A Toolkit for Reliable Benchmarking and Research in Multi-Objective Reinforcement Learning,” NeurlPS, 2028.

Reliable implementations of algorithms

MORL-Baselines

&d > 10 MORL algorithms
Compatible with MO-Gymnasium

Clean, tested and documented code
L ots of utilities for MORL researchers

29



2. Multi-Objective Multi-Agent RL
(MOMARL)



Setup

Environment

>

il Next states

Each agent receives a vectorial reward signal

Radulescu, R. et al., “Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey,” Autonomous Agents and Multi-Agent Systems, 2020.
31



Solution concepts

MOMARL

In this setting, the value
function Is a matrix of size

_ Unknown utility objs x agents
P=vi..v

Known utility
n

~MARL policy with “I\/Iu\ti—compromise” MARL
ESR vs. SER | e—— \

There are still relatively ¢ Team reward )
mexplore@%rc%sm gz — V
heterogeneous utilities § P areto set Of |\/| A policies 4

Ay
N
xR
| |
\\ .
N\ N
’ b ’»"

Pareto-Nash sets
(no known algorithm)

s
=

. - _ ?’ _—
[1] Radulescu, R. et al., “Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey,” Autonomous Agents and Multi-Agent Systems, 2020.
[2] F. Felten et al., “MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning,” ArXiv, 2024.
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Pareto set of MA policies

Package
stability

Velocity

F. Felten et al., “MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning,” ArXiv, 2024.
33



earning Pareto sets of MA policies
Option 1: Centralisation + MORL

MOMA env = ..
MO env = CentraliseAgent (MOMA env)

Pareto policles = MORL (MO env)

There are obvious problems with this approach, e.qg., explosion of the action space
But it still gives a good baseline for future research

F. Felten et al., “MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning,” ArXiv, 2024.
34



earning Pareto sets of MA policies
Option 2: Decomposition + MARL

obj2 |

MOMA env = .. \\\\\

welghts = generate weilghts(n objs)

for w 1n weights:

MA env = LinearizeRewards (MOMA env, w) ///// \\\\\

MA policiles.append (MARL (MA env))

obj 1

Pareto policies prune (MA policies)

Naive baseline but we can

transfer a lot of knowledge
from MORL/D

F. Felten et al., “MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning,” ArXiv, 2024.
35






Envs and baselines J5 MOMAland

L] ~10 MOMARL environments under a unified AP

-
@ wd Open-source, part of the Farama Foundation

wd Also brings utilities and learning algorithms, c.g.,
MOMAPPO

F. Felten et al., “"MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning,” , arXiv, 2024. O @

37




Overview of the Farama ecosystem

& Gymnasium
+ MO + MA
reward support
scalarisation VecEnv
wrapper wrapper
M MO-Gymnasium DGttlﬂgZOO
+ M + MO
support reward
centralisation scalarisation
wrapper wrapper

s MOMAland @
Image by Roxana Radulescu



3. Application



CrazyRL

States:

Each drone percelves X, Yy, z coordinates of
everyone

Actions:
3D speed vector
Objectives:

- Close to target

- Far from other agents
(avoid collisions & spread)

[1] Giernacki, W., et al., “Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering,” in 22nd International Conference on Methods an;a

Models in Automation and Robotics (MMAR), 2017.
[2] F. Felten, “Multi-Objective Reinforcement Learning,” PhD Thesis, Université du Luxembourg, 2024.



Accelerated decomposition

1. The CrazyRL environments can be run on a GPU (JAX-based implementation);
2. Learning and simulations co-located on the same accelerated hardware;

3. We can benefit from running the training of multiple trade-offs in parallel on the GPU.

V
74

[Decompositio ‘/ N\
y \
y 3

Cooperation, )

i{ .

§ Embarassingly parallel
i

!

Sample efficiency Sample throughput ,

Adaptive weight generation

Requires thread sync No sync

F. Felten, “Multi-Objective Reinforcement Learning,” PhD Thesis, Université du Luxembourg, 2024.
41



Learning + simulation on GPU

For 1 trade-off: MAPPO [1]

MAPPO CPU (1 env) — MAPPO Full GPU (1 env) —— MAPPO Full GPU (10 envs)
Sample efficiency Wall time efficiency
80 1 80 - ‘
60 - 60 -
-
=
GL) 40 A 40 -
s
=
O
n
‘o 20 20
LL]
0 0
OIK 26K 4CI)K 66K 8(I)K 1OIOK 6 5l0 1(1)0 1FI>O 260 2!150 360 3_%0
Total timesteps Time (seconds)

[1] C. Yu et al., “The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games,” in NeurlPS, 2022.

2] F. Felten, “Multi-Objective Reinforcement Learning,” PhD Thesis, Université du Luxembourg, 2024.
42



Accelerated decomposition

Training for various trade-offs in parallel on a GPU.

Number ;
of 1 10 20 30
. (CPU)
policies
, 7228.6 10.6 35.9 56.9 78.8

Time
::22.8 ::0.3 ::0.9 ::0.4 ::0.8

SPS 415 282,251 837,251 1,053,653 1,141,864
::1.3 i 6809 i 20,223 i 7783 i 10,858

Speedup - ~680x ~2017x ~2539x ~2751x

Very few researchers look at wall-time in practice.

F. Felten, “Multi-Objective Reinforcement Learning,” PhD Thesis, Université du Luxembourg, 2024.
43



Trade-offs
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https://www.youtube.com/watch?v=4FeTjZnpgJI

Wrapping up
® [here are many problems which require optimizing multiple objectives

e [raditional (MA)RL overlook these aspects, and scalarizing rewards
does not always give you what you want!

o MO(MA)RL are promising fields of research — lots of low hanging fruits

® \\le have tools for empirical evaluation — avoid the reproducibllity crisis

Thank you!

ffelten@mavt.ethz.ch



