"It depends": Dealing with Multiple Objectives in (MA)RL

Florian Felten <u>ffelten@mavt.ethz.ch</u> **()**ffelten

The recent rise of Artificial Intelligence (AI)

[1] Silver, D. et al. "Mastering the game of Go without human knowledge." Nature, 2017. [2] Smith, L. et al. "A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free Reinforcement Learning." Proc. of the XIXth Conference on Robotics: Science and Systems, 2023.

[3] https://www.nobelprize.org/prizes/lists/all-nobel-prizes/

∧ Meta Al

Reinforcement Learning (RL) A key technique behind these advances

Markov Decision Process (MDP)

Agent

Solution Second Seco

Sutton & Barto. "Reinforcement Learning: An Introduction.", 2018, MIT Press.

Environment

The need to consider multiple objectives

Games

Real-world applications

Reward:

Speed vs. energy consumption

[1] Vamplew, P. et al., "Scalar reward is not enough: a response to Silver, Singh, Precup and Sutton (2021)," Autonomous Agents and Multi-Agent Systems, 2022. [2] P. Leroy, P. G. Morato, J. Pisane, A. Kolios, and D. Ernst, "IMP-MARL: a Suite of Environments for Large-scale Infrastructure Management Planning via MARL," NeurIPS, 2023.

Reward:

+1 if win, 0 if draw, -1 if lose

Traditional approach in RL The trial and error

While not happy:

- 1. Set a weight/"importance" to each objective
- 2. Scalarize the objectives: $(0.3 \times \text{obj} 1 + 0.7 \times \text{obj} 2)$
- This takes hours or days 3. Train the RL agent
- 4. Look at the resulting behavior

We can do better !

This is decided by the engineer, not the end user

Today's menu How to do better than the trial and error.

- 1. Single Agent MORL
- 2. Multi-Agent MORL
- 3. Example application

A glimpse of:

- Solution concepts
- Naive baselines
- Algorithmic improvements
- Tooling

1. Multi-Objective RL

[1] Roijers, D. et al., "A Survey of Multi-Objective Sequential Decision-Making," Journal of Artificial Intelligence, 2013. [2] Hayes, C. et al., "A practical guide to multi-objective reinforcement learning and planning," Autonomous Agents and Multi-Agent Systems, 2022. В

Setup

Environment

Optimal policy?

argmax is not defined on vectors...

 \mathbb{P} we can use a function $g: \mathbb{R}^m \mapsto \mathbb{R}$ that captures the user preferences to scalarize the reward vector (if we know them at training time) Most common example: weighted sum $\sum \omega_i r_i$ i=1

Discounted sum of rewards

Non-linear scalarization

... with vectorial rewards $\pi^* = \arg \max$

Scalarizing after expectation

 $\pi^*_{\mathrm{SER}} = \operatorname*{arg\,max}_{\pi}$

 \neq

Scalarizing before $\pi^*_{\mathrm{ESR}} = \operatorname*{arg\,max}_{\pi}$ expectation

SER: when you want the agent to behave on average over various episodes, e.g., investing ESR: when you want each application of the policy to be good, e.g., cancer detection

D. Roijers, D. Steckelmacher, and A. Nowe, "Multi-objective Reinforcement Learning for the Expected Utility of the Return," ALA workshop at ICML/AAMAS/IJCAI, 2018.

$$\propto \mathbb{E}_{a_t \sim \pi(s_t)} \left[\sum_{t=0}^{\infty} \gamma^t \mathbf{r}(s_t, a_t, s_{t+1}) \mid s_0 \right]$$

$$g \left(\mathbb{E}_{a_t \sim \pi(s_t)} \left[\sum_{t=0}^{\infty} \gamma^t \mathbf{r}(s_t, a_t, s_{t+1}) \mid s_0 \right] \right)$$

$$\mathbb{E}_{a_t \sim \pi(s_t)} \left[g \left(\sum_{t=0}^{\infty} \gamma^t \mathbf{r}(s_t, a_t, s_{s+1}) \right) | s_0 \right].$$

What if you don't know the user preferences at training time? Solution concepts MORL **Known utility Unknown utility** Scalarized MORL with Multi-policy MORL ESR vs. SER

Aims at finding an assignment of decision variables (\neq learning).

Returns a solution set based on **Pareto optimality** [1,2]

[1] Talbi, E.-G., "Metaheuristics: From Design to Implementation." Wiley Publishing, 2009. [2] Zitzler, E., "Evolutionary algorithms for multiobjective optimization: methods and applications," in Ph.D. Dissertation. ETH Zurich, 1999.

Multi-policy MORL Learning behaviors associated with different compromises

 [1] Roijers, D. et al., "A Survey of Multi-Objective Sequential Decision-Making," Journal of Artificial Intelligence, 2013.
 [2] Hayes, C. et al., "A practical guide to multi-objective reinforcement learning and planning," Autonomous Agents and Multi-Agent Systems, 2022. 13

[1] Roijers, D. et al., "A Survey of Multi-Objective Sequential Decision-Making," Journal of Artificial Intelligence, 2013. [2] Hayes, C. et al., "A practical guide to multi-objective reinforcement learning and planning," Autonomous Agents and Multi-Agent Systems, 2022.

Families of multi-policy algorithms

Pareto-based

- Learn Pareto fronts for each state-action [1];
- Bootstraps on sets of vectors;
- ~ 5 existing works;
- Does not really scale to deep RL yet.

[1] K. Van Moffaert and A. Nowé, "Multi-objective reinforcement learning using sets of pareto dominating policies," The Journal of Machine Learning Research, 2014. [2] F. Felten, E.-G. Talbi, and G. Danoy, "Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework," Journal of Artificial Intelligence Research, 2024.

Decomposition-based

- Decompose the problem into several singleobjective subproblems using a scalarization function [2];
- A large majority of existing works are decomposition-based;
- Trivial to scale to deep RL.

weights = generate uniformly(n objs)

pi, v = train rl(w, scalarization, env)

policies.append((pi, v))

pareto optimal = prune(policies)

return pareto optimal

policies = []

for w in weights:

MORL research is about doing better than this... And we often use existing methods from other fields such as MOO

Which scalarization function? Linear? $\sum \omega_i \times obj_i$

[1] Zhang, Q. and Li, H. "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition," IEEE Transactions on Evolutionary Computation, 2007.

Most common scalarization

But, cannot capture points in the concave parts of the PF;

Other non-linear functions exists, e.g. Chebyshev, PBI, etc. [1]

Can we use existing solutions to discover new ones?

variable 1

Multiple ways to "cooperate" exist: crossover, shared search memory, etc.

[1] Zhang, Q. and Li, H. "MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition," IEEE Transactions on Evolutionary Computation, 2007.

MOO: **Cooperation** techniques and similarity between neighbor solutions

Cooperation in MORL

parameter 1

parameter 1

Chen, D., Wang, Y., and Gao, W., "Combining a gradient-based method and an evolution strategy for multi-objective reinforcement learning," Applied Intelligence, 2020. 20

Cooperation in MORL Conditioned network

1 network encodes multiple (all?) policies!

Abels, A., et al., "Dynamic Weights in Multi-Objective Deep Reinforcement Learning," in Proceedings of the 36th International Conference on Machine Learning (ICML), 2019. 21

Recurring topics

Multi-Objective Optimization based on Decomposition

How to cooperate between subproblems?

Which scalarization function?

How to generate weight vectors?

MORL/D Reinforcement Learning

What variant of the Bellman update? Which replay buffer strategy? On or off-policy?

A lot of existing techniques from MOO and RL can be applied to form new MORL/D methods.

Actually, various MORL contributions already use existing techniques. But the interactions between MOO/D, RL and MORL are not well identified. 22

A taxonomy to classify existing and future works

F. Felten, E.-G. Talbi, and G. Danoy, "Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework," Journal of Artificial Intelligence Research, 2024.

We also propose a framework based on the taxonomy to construct adhoc algorithms

The MORL/D taxonomy

Bringing more clarity on ad-hoc contributions.

	MOO				RL					
	Weight vectors		Cooperation				Buffer			
Reference	When?	How?	Neighb.	Mechanism	Trigger	Regression structure	Policy improv.	Neighb.	Storage & Sampling Strategy	Sampling strategy
[Roijers et al., 2015b]	Dynamic	Adaptive - OLS	Single - Closest weight	Transfer	Periodic	$n \times$ Tabular	Scalarized POMDP solver	/	/	Policy following
[Mossalam et al., 2016]	Dynamic	Adaptive - OLS	Single - Closest weight	Transfer	Periodic	$\begin{array}{c} n \times \text{DNN} \\ + \text{MO reg.} \end{array}$	Scalarized DQN	Indep.	Recency + Uniform	Policy following
$\begin{bmatrix} \text{Chen et al.,} \\ 2020 \end{bmatrix}$	Static	Manual	All	Shared buffer Shared layers	Continuous	$n \times \text{DNN}$	Scalarized SAC	All	Recency + Uniform	Parallel policy following
[Yang et al., 2019]	Dynamic	Random	All	CR	Continuous	$1 \times \text{DNN}$	Envelope DQN	All	HER + Recency + Uniform	Policy following
[Xu et al., 2020a]	Dynamic	Uniform	None	None	None	$n \times \text{DNN} + \text{MO reg.}$	Scalarized PPO	Indep.	Recency + Uniform	Policy following
[Abels et al., 2019]	Dynamic	Random	All	CR	Continuous	$1 \times \text{DNN}$ + MO reg.	Scalarized, Multi-weights DQN	All	HER + PER (Diversity)	Policy following
$\begin{bmatrix} A \\ egre et al., \\ 2023 \end{bmatrix}$	Dynamic	Adaptive - GPI-LS	All	CR Shared model	Continuous	$1 \times \text{DNN}$ + MO reg.	Scalarized, Multi-weights DQN or TD3	All	HER + PER (GPI)	Policy following
[Castelletti et al., 2013]	Dynamic	Random	All	CR	Continuous	$1 \times$ Trees	Scalarized FQI	/	/	Historical dataset

F. Felten, E.-G. Talbi, and G. Danoy, "Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework," Journal of Artificial Intelligence Research, 2024.

Framework instantiation

MORL/D

Discrete state/action spaces

Concave Pareto frontier

Looking for a deterministic policy

Scalarization

Chebyshev

[1] Czyzżak, P. and Jaszkiewicz, A., "Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization," Journal of Multi-Criteria Decision Analysis, 1998. [2] Roijers, D., Steckelmacher, D., and Nowe, A., "Multi-objective Reinforcement Learning for the Expected Utility of the Return," in Proceedings of the ALA workshop at ICML/AAMAS/IJCAI, 2018.

Weight vector	Policy improvement
Uniform, then adaptive technique from MOO [1]	Expected Utility Policy Gradient [2]

Framework instantiation

MORL/D can learn points in the concave part of the PF.

Finds different points thanks to the weight adaptation techniques from MOO literature.

F. Felten, E.-G. Talbi, and G. Danoy, "Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework," Journal of Artificial Intelligence Research, 2024.

Tooling

F. Felten, L. Alegre, et al., "A Toolkit for Reliable Benchmarking and Research in Multi-Objective Reinforcement Learning," NeurIPS, 2023.

Standard environments

> 25 MORL environments under a unified API

Open-source, part of the Farama Foundation since

Useful and used

> 100k downloads in ~1.5 years

Reliable implementations of algorithmsSingle or
multi-policyUtilityObservationActionSingle or
multi-policyUtilityObservationActionSingle or
multi-policyUtilityObservationActionSingle or
multi-policyUtilityObservationActionSingle or
multi-policyUtilityObservationActionSingle or
multi-policyUtilityObservationActionSingle or
multi-policyDisc.Disc.Disc.

Algorithm	Single or	Utitlity	Observation	Action	
	multi-policy	function	space	space	
MOQL [Van Moffaert et al., 2013]	Single	Linear	Disc.	Disc.	
EUPG [Roijers et al., 2018]	Single	$\operatorname{Non-linear}$, ESR	Disc.	Disc.	
MPMOQL [Van Moffaert et al., 2013]	Multi	Linear	Disc.	Disc.	
PQL [Van Moffaert and Nowé, 2014]	Multi	Non-linear, SER (*)	Disc.	Disc.	
OLS [Roijers and Whiteson, 2017]	Multi	Linear	/ (**)	/ (**)	
Envelope [Yang et al., 2019]	Multi	Linear	Cont.	Disc.	
PGMORL [Xu et al., 2020a]	Multi	Linear	Cont.	Cont.	
PCN [Reymond et al., 2022]	Multi	Non-linear, ESR/SER (*)	Cont.	Disc.	
GPI-LS &	Multi	Linear	Cont	Δnv	
GPI-PD [Alegre et al., 2023]	Withfi	Linear	Cont.	Апу	
CAPQL [Lu et al., 2023]	Multi	Linear	Cont.	Cont.	
MORL/D [Felten et al., 2024] (Section 2.2)	Multi	Any	Any	Any	

F. Felten, L. Alegre, et al., "A Toolkit for Reliable Benchmarking and Research in Multi-Objective Reinforcement Learning," NeurIPS, 2023.

- > 10 MORL algorithms
- Compatible with MO-Gymnasium
- Clean, tested and documented code
- Lots of utilities for MORL researchers

2. Multi-Objective Multi-Agent RL (MOMARL)

Each agent receives a vectorial reward signal

Rădulescu, R. et al., "Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey," Autonomous Agents and Multi-Agent Systems, 2020.

Setup

Environment

m objectives

Solution concepts

MOMARL

Known utility

~MARL policy with ESR vs. SER

There are still relatively unexplore \mathbf{V}_{ream}^{π} reas $\mathbf{F}_{ream}^{\pi} = \dots = \mathbf{V}_{n}^{\pi}$ heterogeneous utilities

Team reward

Pareto set of MA policies

[1] Rădulescu, R. et al., "Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey," Autonomous Agents and Multi-Agent Systems, 2020. [2] F. Felten et al., "MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning," ArXiv, 2024.

Unknown utility

In this setting, the value function is a matrix of size objs x agents

 $\mathbf{V}^{\pi} = [\mathbf{v}_1^{\pi} \dots \mathbf{v}_n^{\pi}]^T$

"Multi-compromise" MARL

Individual reward

Pareto-Nash sets (no known algorithm)

Pareto set of MA policies

F. Felten et al., "MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning," ArXiv, 2024.

Learning Pareto sets of MA policies Option 1: Centralisation + MORL

MOMA env = ...

Pareto policies = MORL(MO env)

There are obvious problems with this approach, e.g., explosion of the action space But it still gives a good baseline for future research

F. Felten et al., "MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning," ArXiv, 2024. 34

MO env = CentraliseAgent (MOMA env)

Learning Pareto sets of MA policies Option 2: Decomposition + MARL

obj 2 MOMA env = ...weights = generate weights(n objs) for w in weights: MA env = LinearizeRewards (MOMA env, w)

MA policies.append(MARL(MA env))

Pareto policies = prune(MA policies)

F. Felten et al., "MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning," ArXiv, 2024.

Naive baseline but we can transfer a lot of knowledge from MORL/D

Tooling

Envs and baselines

F. Felten et al., "MOMAland: A Set of Benchmarks for Multi-Objective Multi-Agent Reinforcement Learning,", arXiv, 2024.

~10 MOMARL environments under a unified API

Open-source, part of the Farama Foundation

Also brings utilities and learning algorithms, e.g., MOMAPPO

Overview of the Farama ecosystem

Image by Roxana Rădulescu

3. Application

CrazyRL

States:

Each drone perceives x, y, z coordinates of everyone

Actions:

3D speed vector

Objectives:

- Close to target
- Far from other agents (avoid collisions & spread)

[1] Giernacki, W., et al., "Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering," in 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), 2017. [2] F. Felten, "Multi-Objective Reinforcement Learning," PhD Thesis, Université du Luxembourg, 2024.

Accelerated decomposition

- 1. The CrazyRL environments can be run on a GPU (JAX-based implementation);
- 2. Learning and simulations co-located on the same accelerated hardware;

F. Felten, "Multi-Objective Reinforcement Learning," PhD Thesis, Université du Luxembourg, 2024.

3. We can benefit from running the training of multiple trade-offs in parallel on the GPU.

[1] C. Yu et al., "The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games," in NeurIPS, 2022. [2] F. Felten, "Multi-Objective Reinforcement Learning," PhD Thesis, Université du Luxembourg, 2024.

Accelerated decomposition Training for various trade-offs in parallel on a GPU.

	Number of policies	1 (CPU)	1	10	20	30
,	Timo	7228.6	10.6	35.9	56.9	78.8
	SDC	± 22.8	± 0.3	± 0.9	± 0.4	± 0.8
		415	$282,\!251$	$837,\!251$	$1,\!053,\!653$	$1,\!141,\!864$
G	51 5	± 1.3	± 6809	\pm 20,223	± 7783	\pm 10,858
	Speedup	-	\approx 680×	pprox 2017 imes	pprox 2539 imes	pprox 2751 imes

Very few researchers look at wall-time in practice.

F. Felten, "Multi-Objective Reinforcement Learning," PhD Thesis, Université du Luxembourg, 2024.

Trade-offs

Surround

Agents learn to make a formation around the yellow one. Training time: 17 seconds.

Wrapping up

- does not always give you what you want!

Thank you!

• There are many problems which require optimizing multiple objectives

Traditional (MA)RL overlook these aspects, and scalarizing rewards

MO(MA)RL are promising fields of research — lots of low hanging fruits

• We have tools for empirical evaluation — avoid the reproducibility crisis

ffelten@mavt.ethz.ch