
10 - Shared memory
concurrency II

florian.felten@uni.lu

1

mailto:florian.felten@uni.lu

Discussion

2

With the dining philosophers’ problem, you should have experienced issues when playing with multiple locks.

In the previous lecture, we saw how to make a program thread-safe. That is, by satisfying mutual exclusion.

In this lecture, we will go through the additional properties a program must satisfy to guarantee it terminates. Along with the properties, we will of course introduce a set
of techniques.

Let’s see some code!

philosophers_lock.ml3

https://github.com/ffelten/ocaml-snippets/tree/main/

https://github.com/ffelten/ocaml-snippets/tree/main/

The promise

• You will be introduced to the problems
which arise when blocking mechanisms are
introduced;

• You will understand the properties a
program should satisfy to be correct and
terminate;

• You will be exposed to other forms of locks.

4

By the end of this course, my promise is that you…

Deadlock

“Move your car, you’re blocking me”

- Unknown artists

5

a situation which arises when all the threads are
waiting for a resource currently held by another.

When a deadlock happens, the program is stuck and will never finish.

It can happen in computer programs, when all threads are blocked on some kind of locks. But it can also happen in the real world.

2 Dining philosophers rumbling

I will starve
you

Plato Aristotle

6

Let us interest ourselves to the dining philosophers problem with only 2 philosophers.

Pl
at

o
- e

xe
cu

te
d

lin
es

0

1

2

3

Aristotle - executed lines
0 1 2 3

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

1. Mutex.lock mutexes.(left);

2. Mutex.lock mutexes.(right);

3. Printf.printf “Philosopher eating\n”;

Forks owned

7

Let’s see the execution of the program…

Pl
at

o
- e

xe
cu

te
d

lin
es

0

1

2

3

Aristotle - executed lines
0 1 2 3

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

Forks owned

8

1. Mutex.lock mutexes.(left);

2. Mutex.lock mutexes.(right);

3. Printf.printf “Philosopher eating\n”;

Aristotle is chosen to execute its first line, he takes its left fork (the bottom one).

Pl
at

o
- e

xe
cu

te
d

lin
es

0

1

2

3

Aristotle - executed lines
0 1 2 3

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

Forks owned

9

1. Mutex.lock mutexes.(left);

2. Mutex.lock mutexes.(right);

3. Printf.printf “Philosopher eating\n”;

Plato is chosen next, he takes his left fork (the top one).

Pl
at

o
- e

xe
cu

te
d

lin
es

0

1

2

3

Aristotle - executed lines
0 1 2 3

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

Forks owned

10

1. Mutex.lock mutexes.(left);

2. Mutex.lock mutexes.(right);

3. Printf.printf “Philosopher eating\n”;

Looks like both philosophers are stuck waiting for a fork to be available. This is what we call a deadlock.

Pl
at

o
- e

xe
cu

te
d

lin
es

0

1

2

3

4

5

Aristotle - executed lines
0 1 2 3 4 5

3, 4

4, 3

4, 1

1, 4 5, 4

4, 5

5, 3

3, 5

5, 2

2, 5

5, 1

1, 5

5, 0

0, 5

5, 2

2, 5

2, 4

4, 2

4, 0

0, 4 4, 4

5, 5

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

1. Mutex.lock mutexes.
(left);

2. Mutex.lock mutexes.
(right);

3. Printf.printf
“Philosopher eating\n”;

4. Mutex.unlock mutexes.
(left);

5. Mutex.unlock mutexes.
(right);

Critical region from the point
 of view of the bottom fork

Critical region from the point
 of view of the top fork

Deadlock
region

11

Since there are two different locks, there are two critical regions. We cannot lock both forks atomically so we have to do it in two different instructions.

Notice that forks are inverted for each philosopher. Aristotle sees the bottom fork at its left, while Plato sees it at its right.

This explains why a deadlock region appears in our graph.

How to fix deadlocks?

12

the 4 conditions to deadlock:

• Mutual exclusion

• Hold and wait

• No preemption

• Circular wait

For a deadlock to happen, there are 4 conditions to satisfy:

• Mutual exclusion; a fork can be hold by maximum one philosopher!

• Hold and wait; a philosopher who only has one fork keeps it until it gets the second one.

• No preemption; once a fork has been given to a philosopher, it is impossible to forcibly release it. Only the philosopher can make the choice to release it.

• Circular wait; there is a circular chain of philosophers waiting for fork held by another.

Let us see if we can lift one of these.

1. No mutual exclusion?
plates can be eaten without requiring both forks

losing safety 😭

13

No mutual exclusion means multiple threads can enter critical sections as they wish and the program would stay correct… Given the current setup, it means removing
locks. It seems we will lose our thread safety property if we do that.

Note that there exists data structures which allow concurrent modification without the need for any lock to keep the program safe. You can lookup the concept of
“Conflict-free replicated data type” or “Atomic variables” if you are interested to read further.

2. No hold and wait?

a philosopher who has one fork can decide to release it if he cannot acquire
the second one

14

This works and actually exists. The idea is that if a thread is blocked, it can decide to release the locks it has already acquired to resolve the locking situation.

Let’s see some code!

philosopher_no_hold_wait.ml15
https://github.com/ffelten/ocaml-snippets/tree/main/

https://github.com/ffelten/ocaml-snippets/tree/main/

Output

I’m still

starving

Livelock

17

a blocking situation where each thread blocked by another is actively
trying to resolve the issue on its own.

A livelock is a situation where each thread holding a resource releases it if it cannot obtain the next lock. The problem occurs when there is an execution sequence where
the threads end up in only exchanging resources, without doing any progress.

You can think of a situation where two people cross each other in a narrow corridor, one of them has to take left and the other right. A livelock situation is when both
people choose the same side at the same time, bumping into each other forever.

As we saw in the no hold & wait philosophers’ example, it would be a situation where when the deadlock appears, both philosophers decide to release their fork, saying
“you eat first” to the other. There is a trajectory where the two philosophers take the first fork and release it forever.

Live: they are doing something

lock: but they do not make any progress overall.

To conclude on the no hold and wait section, it is possible to do it but it requires a bit more refinements :-). You can have a look at the concept of “Monitors” if you want a
working example.

3. Preemption?

There is a waiter who can forcibly take the fork from the philosopher

18

The idea here would be to have the system recognising the program is in a deadlock and fixing it by transferring locks. The problem is that it might lead to losses.

In the philosophers’ problem, this would translate by an external person forcing one philosopher to put the fork down when both philosophers are stuck.

You can read further in http://boron.physics.metu.edu.tr/ozdogan/OperatingSystems/week8/node20.html.

4. Breaking circular
dependencies?

19

This solution aims at breaking the potential circular dependencies between thread asking for resources.

There are multiple ways to do so. We will discuss these in the following slides.

Ordered locking

I am left-handedI am right-handed

20

The simplest way is to define an ordering of resources and to always lock in the same order. In practice, it is not so easy as conditional statements can have influence on
which locks are needed - so you don’t know which lock you will take a priori.

Going back to our philosophers’ deadlock; the fix is to let one of them start by taking the right fork.

Coarse-grained locking

21

The idea of coarse-grained locking is to group various locks under a “bigger one”, breaking circular dependencies 🤓 . It means multiple resources can be protected by
one lock. This technique is used quite a lot in practice due to its simplicity.

While this simplifies our problem, it can have significant performance issues. The extreme example is having one lock to protect all mutable resources… Well it makes
our program sequential (remember our initial goal was to get out of sequentiality 🧐).

Starvation

22

Another issue might arise when playing with multiple threads…

Starvation

I will starve
you

AristooFastPlatSlow

23

Another way to resolve the philosophers’ problem is simply to make one starve. The idea is that this philosopher is never taking any fork. For example, if one is faster
than the other to take forks when they are available. Is it really fair though?

Formally, in computer science, a program satisfies the property of fairness when no thread ever suffer from starvation. Starvation is a situation where a thread is unable to
make any progress.

Properties
Safety ↔ the program gives the correct result

mutual exclusion

Liveness ↔ the program terminates

deadlock-free & livelock-free

Fairness ↔ every thread gets his chance

starvation-free

24

Careful with locks: 
No hold & wait, break circular dependencies, 
preemption, no mutual exclusion.

Release the locks!

Use locks.

A real world anecdote

Prof. Edward A. Lee“Told ya” 
- Ptolemy

25

From https://ptolemy.berkeley.edu/

The Ptolemy project studies modeling, simulation, and design of concurrent, real-time, embedded systems. The focus is on assembly of concurrent components.
The key underlying principle in the project is the use of well-defined models of computation that govern the interaction between components. A major problem area
being addressed is the use of heterogeneous mixtures of models of computation.

Ptolemy
Prof. Edward A. Lee

In the early part of the year 2000, my group began developing the
kernel of Ptolemy II, a modelling environment supporting
concurrent models of computation.

The challenge was to ensure that no thread could ever see an
inconsistent view of the program structure. The strategy was to
use Java threads with monitors.

code reviewed by experts automated tests design reviews

code coverage metrics code maturity rating system
nightly builds

26

Deadlock after 4 years

27

“The fact that a problem as serious as a deadlock that locked up
the system could go undetected for four years despite the good
practice is alarming.”

- E. Lee, “The Problem with Threads”

For further information, you can read the excellent article:

E. Lee, “The Problem with Threads,” Computer, vol. 39, pp. 33–42, Jun. 2006, doi: 10.1109/MC.2006.180.

Shades of lock

28

Mutex locks are not the only form of locks. The following slides present a few more forms of locks.

ReentrantLock

29

lock: mutex -> unit Before 4.12 Sys_error was not raised for recursive locking
(platform-dependent behaviour)

Raises Sys_error if the mutex is already locked by the thread
calling Mutex.lock.

(!) The behaviour in those cases depend on the implementation. In other
languages, it will be different e.g. no exception is raised.

https://v2.ocaml.org/api/Mutex.html#VALlock

Semaphore
1962 by

Edsger W. Dijkstra

==Counter + Lock

30

make: int -> semaphore

release: semaphore -> unit

acquire: semaphore -> unit

Semaphore.Counting.make n returns a new counting
semaphore, with initial value n. The initial value n must be
nonnegative.

release s increments the value of semaphore s.
If other threads are waiting on s, one of them is
restarted.

acquire s blocks the calling thread until
the value of semaphore s is not zero, then
atomically decrements the value of s and
returns.

https://v2.ocaml.org/api/Semaphore.Counting.html

Note Semaphore.Binary is actually a mutex.

The original concept comes from the maritime world, where they use flags to communicate. The idea is to tell the boats to enter the harbour or not depending on the
space left.

The semaphore idea in computer science comes from there; you can have at most N threads (boats) entering the critical sections (harbour) at any time, when the critical
section (harbour) is full, the semaphore blocks the others until a thread (boat) leaves the critical section (harbour).

Even if it is an old concept, semaphore are still widely used. Interestingly, mutex locks can be represented by semaphores, with resources=1.

https://v2.ocaml.org/api/Semaphore.Counting.html

There is more…

Mutex lock

Semaphore

Reentrant lock

Monitor

Read-write lock Spinning lock

Blocking lock

Atomic data structures

Barriers

31

We already saw different tools we can use to solve the synchronisation problem but there are more!

You can have a look at “Monitors”, which is the concept behind the synchronized keyword in Java, if you want to understand how it works under the hood. The reference
book or a Google search will lead you to a lot of resources here 😇 .

There are also other ways to solve the mutual exclusion problem, OCaml provides Atomic data structure, on which you can perform atomic operations. RTM: https://
v2.ocaml.org/api/Atomic.html

… or you have “read-write” locks. The idea is that multiple readers can access the data at the same time (so there is no critical section when read-only), but only one
writer can access the data when it is modifying it. Example in Java: https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReadWriteLock.html

Thread barriers: the idea is to put checkpoints which all threads have to reach together before going further. It is notably useful to save intermediary results. Again,
example in Java: https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CyclicBarrier.html .

Take aways - did I hold my promise?

There are multiple ways to avoid deadlocks

There exists multiple forms of locks

Locks are not trivial to use… Even experts failed 😱

There are multiple properties to satisfy in multi-threaded programs

32

33

Exercises

Resources

Chapter 2

The Ptolemy project

E. Lee, “The Problem with Threads,”
Computer, vol. 39, pp. 33–42, Jun.
2006, doi: 10.1109/MC.2006.180.

P. V. Roy, “Programming Paradigms for
Dummies: What Every Programmer
Should Know,” p. 39.

34

https://ptolemy.berkeley.edu/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://www.info.ucl.ac.be/~pvr/VanRoyChapter.pdf
https://www.info.ucl.ac.be/~pvr/VanRoyChapter.pdf
https://www.info.ucl.ac.be/~pvr/VanRoyChapter.pdf
https://www.info.ucl.ac.be/~pvr/VanRoyChapter.pdf

