
9 - Shared memory
concurrency I

1

florian.felten@uni.lu

mailto:florian.felten@uni.lu

Doing multiple things at the same time

How can a chat receive your
keyboard input and inputs from
the network at the same time?

Why is there so much hype with
GPUs?

How does excel not freeze
when you input a number in cell
and it has to compute new
results in other cells?

The promise

• You will be introduced to the concept of
Thread;

• You will understand some of the issues
related to concurrent programming;

• We will present one of the possible
solutions to solve these issues.

3

By the end of this course, my promise is that you…

Threads

4

Computing Infrastructure 1 / Lecture 65

Last year, the concept of thread has been introduced in Computing Infrastructure 1.

Threads can be considered as lightweight processes with their own control flow within the one process.

6 Computing Infrastructure 1 / Lecture 6

Each thread has its own program counter (own logical flow), its own stack (local variables), and its own registers.

The main difference with processes is that threads share code and data (e.g. from the heap).

Threads in OCaml

create: ('a -> ‘b) -> ‘a -> thread

id: thread -> int

Thread.create funct arg creates a new thread of
control, in which the function application funct arg is
executed concurrently with the other threads of the
program. The application of Thread.create returns the
handle of the newly created thread.

Return the identifier of the given thread. A thread
identifier is an integer that identifies uniquely the thread.

join: thread -> unit join th suspends the execution of the calling thread until
the thread th has terminated.

self: unit -> thread Return the handle for the thread currently executing.

Let’s see some code!

print_threads.ml8
https://github.com/ffelten/ocaml-snippets/tree/main/shared_memory_I

https://github.com/ffelten/ocaml-snippets/tree/main/shared_memory_I

thread 1 starts processing.
thread 0 starts processing.
thread 0 done processing.
thread 1 done processing.

thread 0 starts processing.
thread 1 starts processing.
thread 1 done processing.
thread 0 done processing.

Non-determinism

9

Why are the results different? It is the same code and the same inputs…

A program which always returns the same output for the same input is said to be deterministic.

A program which might return different outputs for the same input is said to be non-deterministic.

Threads scheduling

10

Thread 1

Thread 2

Thread 3

Thread 4

Main thread

Core 1

Core 2

Scheduler

OS

Threads

CPU

 Computing Infrastructure 1 / Lecture 611

! OCaml threads use only one core ! (concurrent, but not parallel)
Multi-core OCaml is coming with the 5.0 version.

Remember from Computer Infrastructure 1. Processes are shared between processors, it is the Operating System that is responsible for context switches.

The same idea applies to threads: they share the CPU. It is the scheduler which is responsible to run and stop threads on the CPUs. From a programmer point of view,
you can think of submitting one task in a queue when you launch a thread. It will eventually be picked and run until it is paused again or it has finished.

Note that it also works for multiple threads sharing one core - this is the difference between concurrent (>= 1 core) and parallel (>1 core) programs.

There are multiple ways to schedule threads, but it is out of scope for this course. Our main concern here is that the scheduling is non-deterministic. We cannot infer
anything from the order in which the threads will be executed. This explains why we saw different outputs for the same program earlier.

1. Printf.printf “thread %d starts processing.” n;
2. Thread.delay 0.5;
3. Printf.printf “thread %d done processing.” n;

Progress graphs (2 threads - 1 core)

Th
re

ad
 2

 -
ex

ec
ut

ed
 li

ne
s

0

1

2

3

Thread 1 - executed lines
0 1 2 3

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

12

12

Progress graphs are a nice way to visualise the possible interleavings between thread executions.

Each axis corresponds to the sequential order of instructions in a thread.

Each point corresponds to a possible execution state (Line#, Line#). For example, (1, 0) means thread 1 finished operation at line 1 and thread 2 did not finish any.

In this case, since we deal with only one CPU, we have a choice to execute instructions from thread 1 or thread 2 at each timestep.

Progress graphs

Th
re

ad
 2

 -
ex

ec
ut

ed
 li

ne
s

0

1

2

3

Thread 1 - executed lines
0 1 2 3

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

1
2

13

1. Printf.printf “thread %d starts processing.” n;
2. Thread.delay 0.5;
3. Printf.printf “thread %d done processing.” n;

Let’s say the scheduler first chooses thread 1 to be executed. We arrive to state (1,0), meaning thread one finished the first print while thread 2 did nothing.

Progress graphs

Th
re

ad
 2

 -
ex

ec
ut

ed
 li

ne
s

0

1

2

3

Thread 1 - executed lines
0 1 2 3

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

12

14

1. Printf.printf “thread %d starts processing.” n;
2. Thread.delay 0.5;
3. Printf.printf “thread %d done processing.” n;

Then, the scheduler chooses thread 2, which executes its print instruction.

Progress graphs

Th
re

ad
 2

 -
ex

ec
ut

ed
 li

ne
s

0

1

2

3

Thread 1 - executed lines
0 1 2 3

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

1
2

15

1. Printf.printf “thread %d starts processing.” n;
2. Thread.delay 0.5;
3. Printf.printf “thread %d done processing.” n;

Thread 2 is chosen again.

Progress graphs

Th
re

ad
 2

 -
ex

ec
ut

ed
 li

ne
s

0

1

2

3

Thread 1 - executed lines
0 1 2 3

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

12
16

1. Printf.printf “thread %d starts processing.” n;
2. Thread.delay 0.5;
3. Printf.printf “thread %d done processing.” n;

Then thread 1…

Progress graphs

Th
re

ad
 2

 -
ex

ec
ut

ed
 li

ne
s

0

1

2

3

Thread 1 - executed lines
0 1 2 3

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

1
2 17

1. Printf.printf “thread %d starts processing.” n;
2. Thread.delay 0.5;
3. Printf.printf “thread %d done processing.” n;

Thread 2 is chosen and finishes its execution.

Progress graphs

Th
re

ad
 2

 -
ex

ec
ut

ed
 li

ne
s

0

1

2

3

Thread 1 - executed lines
0 1 2 3

3, 2

3, 1

3, 02, 0

2, 1

1, 30, 3

0, 2

0, 1

3, 32, 3

2, 21, 2

1, 1

1, 00, 0

12 18

1. Printf.printf “thread %d starts processing.” n;
2. Thread.delay 0.5;
3. Printf.printf “thread %d done processing.” n;

Thread 1 finally finishes as well.

Trajectory

Th
re

ad
 2

 -
ex

ec
ut

ed
 li

ne
s

0

1

2

3

Thread 1 - executed lines
0 1 2 3

19

1. Printf.printf “thread %d starts processing.” n;
2. Thread.delay 0.5;
3. Printf.printf “thread %d done processing.” n;

describes one possible execution of the threads

A trajectory is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Should we care about this?

Let’s see some code!

increment_threads.ml21
https://github.com/ffelten/ocaml-snippets/tree/main/shared_memory_I

https://github.com/ffelten/ocaml-snippets/tree/main/shared_memory_I

Non-determinism

The many possible trajectories in multi-threaded programs are at the
source of non-determinism. When the output of a program changes
depending on the trajectory it used, we say that the program is subject to
race conditions.

For simplicity: non-determinism ~ same input, different output.

Shared memory
synchronisation

23

Let us now interest ourselves into sharing memory in non deterministic world…

In computer science, we talk about shared memory concurrency when multiple threads or processes share access to data.

count += 1

LOAD count in R1

INC R1

WRITE R1 in count

24

Note: Compilers might rewrite code

It is not because it looks like a single instruction that it is one!

This guy is also subject to non-determinism if executed on multiple threads…

Other languages are not safer than OCaml… 🥹

Those two programs are exactly the same. In fact, the left part is rewritten as the right part during compilation.

1. LOAD count in R1
2. INC R1
3. WRITE R1 in count

In
cr

em
en

te
r T

hr
ea

d
2

- e
xe

cu
te

d
lin

es

0

1

2

3

Incrementer Thread 1 - executed lines
0 1 2 3

0, 3 1, 3 2, 3 3, 3

3, 2

3, 1

3, 02, 0

2, 1

0, 2

0, 1

2, 21, 2

1, 1

1, 00, 0

12

25

Memory Registers

Thread 1 Thread 2

Shared Memory

count=0

Let us clearly identify the source of non-determinism.

Remember that threads share some memory (e.g. the heap), but have their own registers and program counter!

For this example, we examine one loop execution of 2 threads incrementing the counter.

Let’s say we start with a counter value of 0.

1. LOAD count in R1
2. INC R1
3. WRITE R1 in count

In
cr

em
en

te
r T

hr
ea

d
2

- e
xe

cu
te

d
lin

es

0

1

2

3

Incrementer Thread 1 - executed lines
0 1 2 3

0, 3 1, 3 2, 3 3, 3

3, 2

3, 1

3, 02, 0

2, 1

0, 2

0, 1

2, 21, 2

1, 1

1, 00, 0

1
2

26

Memory Registers

Thread 1 Thread 2

R1=0

Shared Memory

count=0

Thread 1 is the first to be executed, loading the content of count into R1

1. LOAD count in R1
2. INC R1
3. WRITE R1 in count

In
cr

em
en

te
r T

hr
ea

d
2

- e
xe

cu
te

d
lin

es

0

1

2

3

Incrementer Thread 1 - executed lines
0 1 2 3

0, 3 1, 3 2, 3 3, 3

3, 2

3, 1

3, 02, 0

2, 1

0, 2

0, 1

2, 21, 2

1, 1

1, 00, 0

12

27

Memory Registers

Thread 1 Thread 2

R1=0 R1=0

Shared Memory

count=0

Thread 2 is then chosen to be executed, loading the value of count into its R1.

1. LOAD count in R1
2. INC R1
3. WRITE R1 in count

In
cr

em
en

te
r T

hr
ea

d
2

- e
xe

cu
te

d
lin

es

0

1

2

3

Incrementer Thread 1 - executed lines
0 1 2 3

0, 3 1, 3 2, 3 3, 3

3, 2

3, 1

3, 02, 0

2, 1

0, 2

0, 1

2, 21, 2

1, 1

1, 00, 0

1
2

28

Memory Registers

Thread 1 Thread 2

R1=0 R1=1

Shared Memory

count=0

Thread 2 is chosen again, incrementing R1.

1. LOAD count in R1
2. INC R1
3. WRITE R1 in count

In
cr

em
en

te
r T

hr
ea

d
2

- e
xe

cu
te

d
lin

es

0

1

2

3

Incrementer Thread 1 - executed lines
0 1 2 3

0, 3 1, 3 2, 3 3, 3

3, 2

3, 1

3, 02, 0

2, 1

0, 2

0, 1

2, 21, 2

1, 1

1, 00, 0

12

29

Memory Registers

Thread 1 Thread 2

R1=1 R1=1

Shared Memory

count=0

Thread 1 is chosen, incrementing R1.

1. LOAD count in R1
2. INC R1
3. WRITE R1 in count

In
cr

em
en

te
r T

hr
ea

d
2

- e
xe

cu
te

d
lin

es

0

1

2

3

Incrementer Thread 1 - executed lines
0 1 2 3

0, 3 1, 3 2, 3 3, 3

3, 2

3, 1

3, 02, 0

2, 1

0, 2

0, 1

2, 21, 2

1, 1

1, 00, 0

1
2

30

Memory Registers

Thread 1 Thread 2

R1=1 R1=1

Shared Memory

count=1

Thread 1 is chosen again, writing R1 into count.

1. LOAD count in R1
2. INC R1
3. WRITE R1 in count

In
cr

em
en

te
r T

hr
ea

d
2

- e
xe

cu
te

d
lin

es

0

1

2

3

Incrementer Thread 1 - executed lines
0 1 2 3

0, 3 1, 3 2, 3 3, 3

3, 2

3, 1

3, 02, 0

2, 1

0, 2

0, 1

2, 21, 2

1, 1

1, 00, 0

12
31

Memory Registers

Thread 1 Thread 2

R1=1 R1=1

Shared Memory

count=1

Thread 2 is chosen, writing R1 into count, leading to no update :(.

1. LOAD count in R1
2. INC R1
3. WRITE R1 in count

In
cr

em
en

te
r T

hr
ea

d
2

- e
xe

cu
te

d
lin

es

0

1

2

3

Incrementer Thread 1 - executed lines
0 1 2 3

0, 3 1, 3 2, 3 3, 3

3, 2

3, 1

3, 02, 0

2, 1

0, 2

0, 1

2, 21, 2

1, 1

1, 00, 0

12

32

Memory Registers

Thread 1 Thread 2

Shared Memory

count=0

Are there trajectories leading to the
correct result?

Question

In
cr

em
en

te
r T

hr
ea

d
2

- e
xe

cu
te

d
lin

es

0

1

2

Incrementer Thread 1 - executed lines
0 1 22, 0

2, 1

0, 2

0, 1

2, 21, 2

1, 1

1, 00, 0

Critical section

for _= to n-1 do
(* Danger zone - critical section *)
let c = !count in
…
count := c + 1;
(* End of danger zone *)

done

Why is there a no-entry here?

33

a block of code that can be
accessed by only one thread a time.

Safety
A program where all threads respect all the critical sections is said to respect the
mutual exclusion property.

From those concepts, it seems that in order to make our program correct, we need
to define critical sections where we have shared mutable variable. We also call
this protecting mutability.

A code block is said to be thread-safe if it satisfies the mutual exclusion property. Our
program can be considered thread-safe if all its code blocks are thread-safe.

Note that we do not care about the order in which the threads are actually
executed, our goal is to produce the correct result!

34

Mutex (locks)
create: unit -> mutex

lock: mutex -> unit

try_lock: mutex -> bool

unlock: mutex -> unit

Ready Running Terminated

Blocked

Scheduler
decides who runs

Mutex.lock m;mutex is free

end of trajectory
35

Lock the given mutex. Only one thread can have the mutex locked at any time. A thread that
attempts to lock a mutex already locked by another thread will suspend until the other thread
unlocks the mutex.

Same as Mutex.lock, but does not suspend the calling thread if the mutex is already locked

Thread lifecycle

Unlock the given mutex. Other threads suspended trying to lock the mutex will restart. The
mutex must have been previously locked by the thread that calls Mutex.unlock.

https://v2.ocaml.org/api/Mutex.html

Locks (also called mutex) are the most common answer to satisfy the mutual exclusion property in programming languages supporting multi-threading. You can think of a
lock as an entity providing operations which are guaranteed to be executed by only one thread e.g. it is impossible for two different threads to return from the lock
instruction at the exact same time. Once a thread possesses the lock, it can execute the critical section freely then release the lock. The lock ensures all the other
threads wait before the critical section until it is freed again.

If you want to understand how locks are implemented, I suggest you to go through Chapter 2 of “The Art of Multiprocessor Programming”.

Now that we have locks, the lifecycle diagram of threads can be defined.

* Ready (initial state): thread has instructions to execute, waiting for a core;

* Running: the thread is currently running on a core;

* Blocked: the thread is blocked and cannot make any progress at the moment;

* Terminated: the thread finished to run all its instructions;

https://v2.ocaml.org/api/Mutex.html#VALlock
https://v2.ocaml.org/api/Mutex.html#VALunlock
https://v2.ocaml.org/api/Mutex.html

Let’s see some code!

lock_increment_threads.ml36
https://github.com/ffelten/ocaml-snippets/tree/main/shared_memory_I

https://github.com/ffelten/ocaml-snippets/tree/main/shared_memory_I

Looks like we’re safe, aren’t we? 😈

Take aways - did I hold my promise?

We saw how to create multiple threads

We saw the problems introduced by non-determinism

We saw locks: a mechanism allowing to make multi-
threaded programs determinist

37

38

Exercises

Resources

Chapter 1 & 2

39

