
12 - Message Passing
florian.felten@uni.lu

1

mailto:florian.felten@uni.lu

Recap

We saw that Threads and Domains allow for a program to do multiple 
things at the same time.

We saw that concurrency and parallelism introduce difficulties when 
modifying shared mutable memory.

We fixed the issue by using locks, yet we also saw that it can be very 
difficult to avoid problems such as deadlocks, livelocks, starvation.

2

Me, telling you the awesome news!

3

New toys!

We had a lot of fun (didn’t we?) playing with shared state concurrency concepts. But let’s be honest, it is not the simplest thing to reason with. Even for small programs,
we have seen that it can become quite challenging to keep correct. This lecture will present you with the other common way for dealing with concurrency: message
passing!

Message passing

counter=0

inc
Thread 1

inc

Thread 2

Thread 3
12

4

Remember the bounded buffer?

Q: do I need a lock to protect counter?

The basic form of message passing relies on a communication medium which is often shared by multiple threads. Most of the time, the messages on the medium are
processed one by one, allowing to satisfy the mutual exclusion property by design.

The promise

• You will be introduced to message passing
techniques;

• You will see there are many techniques to
solve one problem;

• You will understand the differences between
message passing and shared state
concurrency.

5

By the end of this course, my promise is that you…

Channels

6

Based on Communication Sequential Processes (CSPs): a formal language to
describe interactions between concurrent systems. Introduced by Tony Hoare in
1978.

As of today, the most famous language supporting channels is Go (https://
golang.org/), but others also support channels such as occam and Crystal.

History
Tony Hoare

7

https://golang.org/
https://golang.org/

Nowadays
Some companies using message passing.

8

Channels

9

Idea: share data between threads through a medium - a channel. Once a thread has
sent the data, they don’t belong to it anymore and it cannot mutate them!

Can be bounded or not. Making the channels blocking or not!

Unicast (only one receives)

Thread 1

Thread 2

Thread 3

Thread 4

Shared channel

Bounded channel

10

Thread 1

Thread 2

Thread 3

Thread 4

Shared channel

“Hello”

Thread 1 sends data

Bounded channel

11

Thread 1

Thread 2

Thread 3

Thread 4

Shared channel

“Hello”

Thread 2 sends data 
However, the buffer is full: thread 2 is blocked!

“World”

Bounded channel

12

Thread 1

Thread 2

Thread 3

Thread 4

Shared channel

“Hello”

* Thread 3 receives data*

“World”

Bounded channel

13

Thread 1

Thread 2

Thread 3

Thread 4

Shared channel

“Hello”

* Thread 3 consumes data*

“World”

* Thread 2 unlocked*

Channel size

0: Blocking channel => producer(s) and consumer(s) have to be synchronized
~unlocking a mutex

0 < size < infinity : Bounded buffer/channel =>
 If max size is reached, producer(s) blocked
 If 0 element, consumer(s) blocked

size = infinity: unbounded channel => max size is given by the memory
(careful)

14

hello_world_channel.ml15

https://github.com/ffelten/ocaml-snippets/tree/main/

https://github.com/ffelten/ocaml-snippets/tree/main/

Channels

make_bounded: int -> ‘a channel

make_unbounded: unit -> ‘a channel

Channel.make_bounded n makes a bounded channel with a
buffer of size n.
With a buffer of size 0, the send operations becomes synchronous.

Returns an unbounded channel.

send: ‘a channel -> ‘a -> unit
Channel.send c v sends the value v over the channel c . If the
channel buffer full then the sending domain blocks until space
becomes available.

Channel.send_poll c v sends the value v over the channel c . If
the channel buffer is not full, the message is sent and returns true.
Otherwise returns false.

send_poll: ‘a channel -> ‘a -> bool

recv: ‘a channel -> ‘a
Channel.recv c returns a value v received over the channel. If the
channel buffer is empty then the domain blocks until a message is
sent on the channel.

16https://github.com/ocaml-multicore/domainslib/blob/0.4.2/lib/chan.mli

https://github.com/ocaml-multicore/domainslib/blob/0.4.2/lib/chan.mli

What kind of data should be sent?

• int ?

• string?

• list ‘a ?

• ref ‘a ?

• array ‘a ?

Be very careful with mutability.

=> Only send immutable data on the channels

17

hello_world_channel_mut.ml18

https://github.com/ffelten/ocaml-snippets/tree/main/

https://github.com/ffelten/ocaml-snippets/tree/main/

Pipelining

19

Data source 1

Data source 2

Data source n Results

Results

In practice, very often, data are  
pipelined and transformed 
by various threads.

Filter

Filter

Transform

Transform

20

Famous example: MapReduce

Note that MapReduce is even more powerful since it  
distributes the load over multiple computers (even more cores)

21

Other well known usage of
message passing concurrency

22

Event loop

23

 click key_press
ed

file_rece
ived

Event buffer
onClickDo

onClickDo

Registered
callbacks

Submit event

Loop dequeues one by one
and multicasts event to callbacks

JavaScript only relies on one physical thread, so nothing is done in parallel, it’s only context switches

The event loop model is mono processor, it relies on context switches only. In this model, instead of talking about messages, we talk about events. The idea is that
threads can submit events to a global buffer. Which will eventually be dequeued one by one and propagated by the event loop. When an event is dequeued, it looks as if
it “happens” to the system.

A callback is a piece of code which is executed when the event it is attached to happens. Multiple callbacks can be registered to the same kind of event. This means we
can have multiple receivers, as opposed to what we saw with channels.

Event loop

Click

// One callback
c1 = button.onClickDo {

print(“Hello”)
}

// Another callback
c2 = button.onClickDo {

print(“World”)
}

Pseudo code

Event queue Stack
(code to execute before next event is dequeued)

24

Let’s see a concrete example of how the JS event queue works.

Event loop

Click

// One callback
c1 = button.onClickDo {

print(“Hello”)
}

// Another callback
c2 = button.onClickDo {

print(“World”)
}

Pseudo code

Event queue Stack
(code to execute before next event is dequeued)

* Click *

25

The user clicks the button

Event loop

Click

// One callback
c1 = button.onClickDo {

print(“Hello”)
}

// Another callback
c2 = button.onClickDo {

print(“World”)
}

Pseudo code

button/
click

Event queue Stack
(code to execute before next event is dequeued)

26

The event is added to the queue

Event loop

Click

// One callback
c1 = button.onClickDo {

print(“Hello”)
}

// Another callback
c2 = button.onClickDo {

print(“World”)
}

Pseudo code

Event queue

c1

c2

Stack
(code to execute before next event is dequeued)

27

The event is dequeued by the event loop, adding all its related callbacks to the stack.

Event loop

Click

// One callback
c1 = button.onClickDo {

print(“Hello”)
}

// Another callback
c2 = button.onClickDo {

print(“World”)
}

Pseudo code

Event queue

c1

c2

Stack
(code to execute before next event is dequeued)

28

The functions on the stack are executed one by one until the stack becomes empty

Event loop

Click

// One callback
c1 = button.onClickDo {

print(“Hello”)
}

// Another callback
c2 = button.onClickDo {

print(“World”)
}

Pseudo code

Event queue

c2

Stack
(code to execute before next event is dequeued)

29

The functions on the stack are executed one by one until the stack becomes empty

Event loop

Click

// One callback
c1 = button.onClickDo {

print(“Hello”)
}

// Another callback
c2 = button.onClickDo {

print(“World”)
}

Pseudo code

Event queue Stack
(code to execute before next event is dequeued)

30

When the stack becomes empty, the loop tries to dequeue the next event (or waits until there is a next event).

There is more…

Channels

CSP

Actors

Active objects

Event loops

Message delivery

Typed interfaces

Supervision

Distributed Message passing

31

Publish-subscribe

tuple space

Of course, there is more to see and the world is big. If you are interested to read further, here are some links:

Publish subscribe is a multi-threaded variant of event loop: https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

Communication sequential processes are the basic idea behind channels: https://en.wikipedia.org/wiki/Communicating_sequential_processes

Some enhanced forms of the Actor model have an interesting form of error handling called supervision: https://doc.akka.io/docs/akka/current/general/supervision.html

There is no best…
Concept Shared-state Message Passing

Communication between threads Shared memory region Immutable messages sent

Thread-safety Requires locking
No locking required (yet we can

synchronise threads with blocking
buffers)

Level of abstraction Low Medium

Communication speed Fast Can be slow (depends on
implementation)

Debugging Can be hard Usually easier than with shared-state

32

From experiences, the best fitted model for building concurrent applications seems to be message passing. However, a lot of real world application rely on shared state
concurrency. In fact, there is a good chance it is what you will see in the industry.

In the end, there is no “best” way to reason. The paradigms we saw are different, yet equivalent in terms of expressivity.

What you should take home is that there are many ways to solve problems. Message passing is better than shared state in some cases, while it is the opposite in others.
It is up to you to choose the model which fits the most to your problem, as well as the one you feel most comfortable with.

There is no “best”

Take aways - did I hold my promise?

We saw message passing - another way to build concurrent programs

We presented the Channel abstraction

We briefly presented other forms of message passing:
event loop of JS.

33

We showed in practice how a pipeline architecture could
look like.

34

Exercises

Producer consumer in Go

35

channel := make(chan int)

// producer
go func() {
for {

 channel <- produceElement()
 }
}()

// consumer
for {
i := <- channel
fmt.Printf("i=%v\n", i)

}

Creates channel of integers

“go” Starts a thread executing a function

Synchronously pushes element on the channel

Synchronously takes element from the channel

Here is an example of the producer consumer problem with a buffer of size one written in Go. Quite elegant, isn’t it?

Resources
Google :-)

OCaml API doc: https://github.com/ocaml-multicore/domainslib/blob/0.4.2/lib/chan.mli

Going further with Message Passing: An excellent video explaining the actor model: https://
www.youtube.com/watch?v=7erJ1DV_Tlo&ab_channel=jasonofthel33t

Understanding the broader scope:

36

https://www.youtube.com/watch?v=7erJ1DV_Tlo&ab_channel=jasonofthel33t
https://www.youtube.com/watch?v=7erJ1DV_Tlo&ab_channel=jasonofthel33t

