
8 - Imperative OCaml

1

florian.felten@uni.lu

Slides inspired from Pierre Talbot.

mailto:florian.felten@uni.lu

I feel you

2

“I just don’t understand why someone would use a language with variables which are actually constants”
- Probably you.

“FP is pretty cool, I am going to use it for sure”
- Probably you at the exam.

The promise

• You will see that we can in fact mutate the
memory in OCaml.

• There are even mutable data structures!

• Exceptions are also doable in OCaml.

• We will build simple programs using that.

3

By the end of this course, my promise is that you…

Imperative OCaml (K_?)

4

< D > ::= Type declaration
| . . .
|exception e of T (exception)

< n, m, p, q, . . . > ::= Expressions
| . . .
| raise e (raise an exception)
| try p with e -> q (catch an exception)
| for i = n [to | down to] m do p done (for loop)
|while b do p done (while loop)
|n <- m (update operator)

Imperative statements are expressions which return unit i.e. they don’t return

Exceptions

5

exception EmptyList (* Exception type declaration *)

let head = function

| [] -> raise EmptyList (* Raise an exception *)

| a::_ -> a

in

let _ =

try head [] (* statement which might raise an exception *)

with EmptyList -> Printf.printf “The list is empty.\n” (* Catch an exception *)

6

Sequencing statements

7

let _ = Printf.printf “hello” in

Printf.printf “world”

We can sequence imperative statements (returning unit) with the “;” operator:

Becomes:

Printf.printf “hello”;

Printf.printf “world”

8

This says “ignore the value returned by this line”

q: Why do I say that
imperative statements return
unit ?

let print_hello name =

Printf.printf “hello”;

Printf.printf “%s\n” name;

let _ = print_hello “you”

What does this do ?

9

let print_hello name =

Printf.printf “hello”;

Printf.printf “%s\n” name;

let _ = print_hello “you”

Careful with sequences
The compiler might not understand what you mean!

This is what the compiler
understands, which
generates not so nice
syntactic error messages.

10

let print_hello name =

(Printf.printf “hello”;

Printf.printf “%s\n” name;)

in

print_hello “you”;

Solutions?

Use parenthesis to group
sequenced statements:

Use begin statement:
let print_hello name =

begin

Printf.printf “hello”;

Printf.printf “%s\n” name;

end

in

print_hello “you”;

…Don’t use imperative stuff?11

(mutable) Arrays

12

Resources: https://v2.ocaml.org/api/Array.html

Some operations:
get: ‘a array -> int -> ‘a

set: ‘a array -> int -> ‘a -> unit

length: ‘array -> int

make: int -> ‘a -> ‘a array

Array.set a n x modifies array a in place, replacing element
number n with x

Array.get a n returns the element number n of array a.

Array.make n x returns a fresh array of length n, initialized
with x.

~ your beloved Python lists.
13

Arrays

https://v2.ocaml.org/api/Array.html

Some (syntactic) sugar !

let t = [|1; 2; 4|] in

…

Array.get t i = t.(i)

Array.set t i v = t.(i) <- v

14

Loops

15

The body of a loop should have type unit…

and usually cause side effects e.g. mutation of something

for i=10 downto 0 do

Printf.printf “%d “ i;

done

let t = [|1; 2|] in

for i=0 to (Array.length t) - 1 do

t.(i) <- t.(i) + 1;

done

(* Functional style on array *)

let t1 = Array.map (fun n -> n + 1) t in …
16

Mutable records

17

(* Type declaration *)

type colouredPoint = { mutable xy: coord; c: string };;

(* Update *)

let p = { xy={x=3; y=2}; c=“Red” } in

begin

p.xy <- {x=5; y=4};

Printf.printf “(%d, %d, %s)” p.xy.x p.xy.y p.c

end

18

Records

Mutable variables

type cell = {mutable content: int};;

Using mutable records, we can have mutable variables, as in all imperative languages

There you go:

(* OCaml *)

let i = {content=0} in

i.content <- (i.content + 1)

Python

i=0

i+=1

A bit of boilerplate when compared to Python… we can do better!
19

Ref type

let i = ref 0 in

i := !i + 1

Resource: https://cs3110.github.io/textbook/chapters/mut/refs.html

type ‘a ref = {mutable contents: ‘a}

ref: ‘a -> ‘a ref

(!): ‘a ref -> ‘a (* Access *)

(:=): ‘a ref -> ‘a -> unit (*Mutation *)

20

https://cs3110.github.io/textbook/chapters/mut/refs.html

Take aways - did I hold my promise?

We saw how to handle mutations in OCaml (variables, loops, arrays)

We saw that exceptions can be used too!

Now that Pierre is gone, we can fall back to proper
imperative style, can’t we? 😈

21

22

Exercises

