
11 - Multicore OCaml
florian.felten@uni.lu

1

mailto:florian.felten@uni.lu

Thread 1

Thread 2

Thread 3

Thread 4

Main thread

Core 1

Core 2

Scheduler

OS

Threads

CPU

 Computing Infrastructure 1 / Lecture 62

! OCaml threads use only one core ! (concurrent, but not parallel)

Multi-core OCaml is coming with the 5.0 version.

Remember this?

Let’s talk threads

How is it possible that OCaml use only one core but  
still looks as if multiple things happen at the same time?

Parallelism = n cores shared by m threads

Concurrency = multiple threads (on >= 1 core)

Thread 2 (core 1)

Thread 1 (core 1)

Context switch: the core is given to another thread

Running waiting

Thread 2 (core 2)

Thread 1 (core 1)

Trick: the program runs so fast that we humans
don’t notice it is not really parallel.

The promise

• Today we’re going to see how to use
multiple cores with Domains in OCaml!

• Difference between Domains and Threads

• We’ll talk about thread pools

5

By the end of this course, my promise is that you…

Domains

spawn: (unit -> ‘a) -> ‘a domain

join: ‘a domain -> ‘a

Domain.spawn funct creates a new domain that runs in parallel
with the current domain. Returns a handle of newly created domain.

Domain.join d blocks until domain d runs to completion.
If d results in a value, then that value is returned
by join d. If d raises an uncaught exception, then that is
re-raised by join d.

Let’s see some code!

fib.ml + parallel_fib.ml7

https://github.com/ffelten/ocaml-snippets/tree/main/

https://github.com/ffelten/ocaml-snippets/tree/main/

– Naive programmer (2022 A.D.)

So this whole Thread thing in OCaml is just a flaw. I better use a
Domain every time.

Shades of threads
Virtual thread Physical thread

 threads share one core

=> lightweight, low footprint

Thread (Python, OCaml, Oz)

Goroutine (Go)

Fiber, lightweightThread (Java)

thread is a core

=> heavyweight, takes time  
to instantiate 🥲

Thread (C, Java, C++)

Domains (OCaml)

~multiprocessing (Python)

Typical usage:  
User interface (react to clicks, keyboard),  
I/Os (don’t wait for a file to open, receive file from the web)

Typical usage:  
Heavy computations (DeepLearning, Parallel search, …),  
Query processing in a server (better to use the full power).

Parallelism vs concurrency
Concurrency: >= 1 cores

Parallelism: > 1 cores

Parallelism is a subset of concurrency.

We have the same non-determinism problems
when using multiple cores as when relying on
context switching. 
 
If we go to low-level, we have more problems with
parallel e.g. cache misses are slow, sharing
memory can be hard, … (we won’t see that here).

Thread pool
Using multiple cores with less overhead? 

Reuse spawned domains!

Task queue

Task 2 Task 1Task 3

(physical) Thread pool

Task queue

Task 2 Task 1Task 3Task 4

New task arrives

(physical) Thread pool

Task queue

Task 2

Task 1

Task 3

(physical) Thread pool

Task 4

Task 1 assigned to a thread

Task queue

Task 2 Task 1

Task 3Task 4

Task 2 assigned to a thread

(physical) Thread pool

Task queue

Task 2

Task 3Task 4

Task 1 done

(physical) Thread pool

Task queue

Task 3Task 4

Task 2 done

(physical) Thread pool

Task: OCaml thread pool usage
setup_pool:  
 ?name:string ->  
 num_additional_domains:int ->  
 unit ->  
pool

Task.setup_pool ~num_additional_domains:n (). Sets up a task execution
pool with num_additional_domains + 1 domains including the current domain.
If name is provided, the pool is mapped to name which can be looked up later
with lookup_pool name.

?name is an optional argument, num_additional_domains is a named argument

run: pool -> unit -> a -> a

Task.run p t runs the task t synchronously in the pool p. This
function should be used at the top level to enclose the calls to
other functions that may await on promises. This
includes await, parallel_for and its variants. Otherwise, those
functions will raise Unhandled exception.

https://github.com/ocaml-multicore/domainslib/blob/0.4.2/lib/task.mli

async: pool -> ‘a task -> ‘a promise

type ‘a task = unit -> ‘a

Task.async p t runs the task t asynchronously in the pool p. The
function returns a promise r in which the result of task t will be stored.

await: pool -> ‘a promise -> ‘a
Task.await p r waits for the promise to be resolved. If the task
associated with the promise had completed successfully, then the result
of the task will be returned.

https://github.com/ocaml-multicore/domainslib/blob/0.4.2/lib/task.mli

Let’s see some code!

many_tasks_parallel.ml, pool.ml19

https://github.com/ffelten/ocaml-snippets/tree/main/

https://github.com/ffelten/ocaml-snippets/tree/main/

Take aways - did I hold my promise?

Domain = core, Thread = Virtual thread

Thread pools allow to share instantiated domains to run multiple tasks 
in parallel.

Concurrency => context switching on one core 
Parallelism => multiple cores

Domains are expensive to instantiate, but they may be useful
for long computations

20

21

Exercises

Resources

• https://github.com/ocaml-multicore/parallel-programming-in-multicore-
ocaml

• https://github.com/ocaml-multicore/domainslib/blob/0.4.2/lib/task.mli

• https://kcsrk.info/ocaml5-tutorial/

https://github.com/ocaml-multicore/parallel-programming-in-multicore-ocaml
https://github.com/ocaml-multicore/parallel-programming-in-multicore-ocaml
https://github.com/ocaml-multicore/domainslib/blob/0.4.2/lib/task.mli
https://kcsrk.info/ocaml5-tutorial/

